$\qquad$
$\qquad$

## 3-1 Study Guide and Intervention Solving Systems of Equations by Graphing

Graph Systems of Equations A system of equations is a set of two or more equations containing the same variables. You can solve a system of linear equations by graphing the equations on the same coordinate plane. If the lines intersect, the solution is that intersection point.

## Example

Solve the system of equations by graphing.

$$
\begin{aligned}
& x-2 y=4 \\
& x+y=-2
\end{aligned}
$$

Write each equation in slope-intercept form.
$x-2 y=4 \rightarrow y=\frac{x}{2}-2$
$x+y=-2 \quad \rightarrow \quad y=-x-2$
The graphs appear to intersect at $(0,-2)$.
CHECK Substitute the coordinates into each equation.

$$
\begin{array}{rlrl}
x-2 y & =4 & x+y & =-2 \\
0-2(-2) & \stackrel{?}{=} 4 & 0+(-2) & \stackrel{?}{=}-2 \\
4 & =4 & -2 & =-2
\end{array}
$$

The solution of the system is $(0,-2)$.


## Exercises

Solve each system of equations by graphing.

1. $y=-\frac{x}{3}+1$
$y=\frac{x}{2}-4$

2. $3 x-y=0$
$x-y=-2$

3. $y=2 x-2$
$y=-x+4$

4. $2 x+\frac{y}{3}=-7$
$\frac{x}{2}+y=1$

5. $y=-\frac{x}{2}+3$
$y=\frac{x}{4}$

6. $\frac{x}{2}-y=2$
$2 x-y=-1$

$\qquad$
$\qquad$

## 3-1 Study Guide and Intervention (continued) <br> Solving Systems of Equations by Graphing

Classify Systems of Equations The following chart summarizes the possibilities for graphs of two linear equations in two variables.

| Graphs of Equations | Slopes of Lines | Classification of System | Number of Solutions |
| :--- | :--- | :--- | :--- |
| Lines intersect | Different slopes | Consistent and independent | One |
| Lines coincide (same line) | Same slope, same <br> $y$-intercept | Consistent and dependent | Infinitely many |
| Lines are parallel | Same slope, different <br> $y$-intercepts | Inconsistent | None |

## Example

 and describe consistent and dependent, or inconsistent.Write each equation in slope-intercept form.

$$
\begin{array}{lll}
x-3 y=6 & \rightarrow & y=\frac{1}{3} x-2 \\
2 x-y=-3 & \rightarrow & y=2 x+3
\end{array}
$$

The graphs intersect at $(-3,-3)$. Since there is one solution, the system is consistent and independent.

$$
\begin{aligned}
& x-3 y=6 \\
& 2 x-y=-3
\end{aligned}
$$



## Exercises

Graph the system of equations and describe it as consistent and independent, consistent and dependent, or inconsistent.

1. $3 x+y=-2$
$6 x+2 y=10$


$$
\text { 4. } \begin{aligned}
2 x-y & =3 \\
x+2 y & =4
\end{aligned}
$$


2. $x+2 y=5$
$3 x-15=-6 y$

5. $4 x+y=-2$
$2 x+\frac{y}{2}=-1$



